Photovoltaic Feasibility in Puerto Rico

Isaac Buettner, Adam Curtis, Hannah Nelson, Manuel Perez-Colon, & Larry Trinh

- Advised by Prof. Vikram Dalal
- SDDEC23-16, contact: hgnelson@iastate.edu

Problem Statement

Our project aims to provide a plan for ensuring reliable and affordable power to all Puerto Rico using photovoltaics combined with battery storage units.

- Puerto Rico's grid is very unstable as a result of frequent hurricanes, outdated power plants, and poor management.
- Renovation and modernization of the transmission, distribution, and generation systems.

Context

PR's government set a goal to be 100% reliant on renewable energy by 2050.

- Action is not being taken at the level it needs to be in order to achieve this goal
- Price of electricity is incredibly high: 23 cents/kWh in residential sector (closer to 12 cents/kWh in Iowa)
- Necessary to bring communities together under goals of reliability and sustainability

PR's Energy Portfolio

Diagrams/plans

LR 100x104x31

Existing Public Infrastructure in Puerto Rico

Current rough estimate for 1 installation on basketball court roof

Goals for the semester

- Further narrow scope of solution regarding either panels on basketball courts or commercial centers
- Plan for connecting microgrids to Puerto Rico's infrastructure
- Specific, quantitative data regarding energy offset, number of microgrids that could be built, battery storage capacity, etc.
- Small, physical model and appropriate infographics to relay project's final design

Technical Challenges

- Electrical schematic
 - Planning for grid connection (if happened in real-world)
 - Layout of solar installation, including dimensions, bill of materials, cost, expected generation, and time until initial investment is recouped.
 - Required switchgear, inverters, safety standards, and all other components related to connecting our microgrids to Puerto Rican homes/businesses.
 - Battery Backup connection/isolation from grid until it is needed. Maintenance requirements/costs

PROJECT TIMELINE

WBS NUMBER	TASK TITLE	START DATE	DUE DATE	DURATION	PCT OF TASK COMPLETE	Semester 1					Semester 2				
						January	Febraury	March	April	May	August	Spetemebr	October	Novemeber	December
1	Developing Key Areas of Researc	ch													
1.1	Introductorty Research	1/30/23	2/13/23	13	100%										
2	Primary Research														
2.1	Scope and Goal Setting	2/13/23	3/27/23	4	90%										
2.2	Research	2/13/23	4/14/23	60	60%										
3	Determine the Correct PV Syster	n													
3.1	Indetifying Alternatives	3/30/23	4/3/23	4	10%										
3.2	Comparing Options	3/30/23	4/17/23	18	0%										
3.3	Assessing Viability	4/17/23	5/1/23	14	0%										
4	Apply relevant IEEE standards														
4.1	IEEE Standards	8/18/23	9/18/23	31	0%										
5	Analyze Cost and Detremine Fea	sability													
5.1	Cost Analysis	9/15/23	10/23/23	38	0%										
6	Develop Model														
6.1	Model Creation	10/9/23	12/4/23	56	0%										